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We present a class of channel models exhibiting varying burst error severity much like
channels encountered in practice. We make an information-theoretic analysis of these
channel models, and draw some conclusions that may aid in the design of coded
communication systems for realistic noisy channels.

I. Introduction
Most of the published research in information theory deals

with memoryless channels, whereas most naturally occurring
communication channels exhibit at least some degree of bursti-
ness, in many cases caused by radio frequency interference
(RFI). For example, optical c6mmunication with direct detec-
tion of photons (Ref. I), spread-spectrum communication in
the presence of hostile jamming (Ref. 2), and communication
in the presence of friendly radar transmission (Ref. 3) all lead
to channel models in which there are periodic bursts of poor
data quality. In this article we shall attempt to model these
complicated channels with a class of channels we call “RF1
channels.” The basic idea behind these models, which we will
develop in later sections, is that the channel noise severity is
required to remain constant over blocks of n transmitted
symbols. However, the channel noise severity may change
between one block of n symbols and the next.

Although much further work in this area remains to be
done, we are able to draw certain conclusions from this class
of models that may prove useful in practical situations. Infor-
mally, our main conclusion is that the memory length n should
be exploited to determine the noise severity within that
block - this is a kind of “soft decision” information; once the

noise severity has been estimated, the best strategy is to use
n-fold coded interleaving to combat the noise.

II. The Channel Models
Consider the following model for a discrete channel t with

memory. We start with a finite collection of discrete memory-
less channels, f, , fz, . . Sk, each with the same input alpha-
bet A, and output alphabet B. When a sequence of letters x1,
X2,” * from A is to be transmitted over {, each block of n
consecutive letters is sent over one of the auxiliary channels
ck, which is selected by an external random variable Z, which
takes values in the set { 1,2, * . . , k }. If, for example, the {!,‘s
are all binary symmetric channels with differing raw bit-error
probabilities, the overall channel { will be characterized by
phased bursts of errors of varying severity.

We consider also another channel r This channel is exactly
the same as { except that it provides to the receiver the ihdex
k of the discrete memoryless channel selected by Z.

Our main results are these. First, the capacity of 3; is
@dependent of n, the burst length. We denote this capacity by
C. Second, the capacity of { does depend on n, is always less
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than c, and if we denote the capacity of { by C,, we have lim
c, = c.

n+m
2 cxk I (X; Y(k)) = 2

Our results follow fairly easily from calculations with
mutual information and entropy. Both channels t andfcan be
viewed as discrete memoryless channels with input alphabet
An.  For t, the output alphabet is Bn, and for K the output
alphabet is Bn X {I, 2, * . ., k). The transition probabilities for
< are

k = l k = l i= 1

= 2 5 Qlk I (xi: Yj’“‘)
i= 1 k = l

where X = (X1, * * .,X,) and Yck) = (Yj”), . * * , Yr))

(3)

P (Y/x) = 2 ak fi P&j Ixj)
k=l rk1

where y = (yi, * * - ,yn), x = (x, , * * * ,x,), p,(vlx)  is the
transition probability for cl,, and elk is the probability that the
channel selected is Sk : ok = Pr {Z = k}. For r, the transition
probabilities are

P(y,klx) = fi Pk(Yjlxj)

i= 1

To compute c*, we are required to maximize this last
expression over all random vectors X = (Xi, X, , - . , X,). The
maximum of the inner sum in Eq. (3),  taken over all choices of
the random variable Xi, is clearly independent of k, and so
from Eq. (2) we have

cn =  s u p  $ ok I (X;Y@))
x k=l

(4)

where the supremum in Eq. (4) is taken over all random
variables taking values in the input alphabet A. (If it happens

From this memoryless viewpoint, the calculation of the that there is a single input distribution X that simultaneously

channel capacities is simply a matter of minimizing the appro- achieves channel capacity on all K channels ck, then

priate mutual informations. For {, the capacity is

C, =fmF I(X;Y) (1)
cn = 2 OlkClc

k = l

where X and Y denote the (n-component) random inputs to
where C, is the capacity of ck.) Equation (4) thus shows that

and outputs from 5. For r, the formula is
c), is independent of n, and that it is in fact the capacity of
the DMC with transition probabilities {LY,~  pk Cylx)}  .

T, =+ maxZ(X;Y,Z)
X

(2) We turn now to the computation of C,,. It is an easy
exercise to show that

(We have indicated a dependence on n, but as indicated above
the capacity c, turns out to be independent of the burst Z(X;Y,Z)-HQ~Z(X;Y)~f(X;Y,Z)  (5)

length.)
It thus follows that for any random vector X,

We shall consider cti first, since its calculation is the easier
of the two. We have,. using standard results about mutual
information (Ref. 4), + Z(X;Y,Z)  - Jfp

(6)

f(X;Y,zJ  = fj ff[‘ I (X; Y(Q) Since H(Z) is a fixed number < log K, the left-hand inequality
k = l in Eq. (6) shows that

where Ycrc) denotes the output of the channel {“,, if X is the
input. Since each Sk is memoryless, we have

liminfCH>Cn  = C
n-+-
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and the right-hand inequality shows that C, =G c, and

lim sup C, G C
n-+m

Together these two inequalities show that lim C, = c, as
asserted. (We conjecture, but have not been abgt;  prove, that
in fact C, is a monotonically increasing function of n J

Ill. An Example
We illustrate these results with a simple example, with

K = 2. Channel 5, is a noiseless binary symmetric channel, and
channel cz is a “useless” BSC with raw bit error probability
l/2.

o-0

1-1

;Y$y 0
l/2
v2

1

CHANNEL  5, CHANNEL  5,

We assume that the channel selector random variable Z is
described byPr (Z=l} = 1 -e,Pr  {Z=2} =e.Thusifeis
small, the overall channel [ is characterized by noise-free
transmission interrupted by occasional but very severe error
bursts.

The capacity of {i is log 2, and the capacity of t2 is 0; both
capacities are achieved by a uniform input distribution, and so
by Eq. (4) c= (1 - e) log 2. A straightforward calculation
shows that the capacities C, are given by

c, = (1 - en) log 2 - ; {H (en) + en log (1 - 2-n) 3

% = (1 - 2-7 e, U(x) = -x log x -(l -x) log (1 -x)

Since en -+ e as y1-+ 00, it follows from this that C,, + c’, but of
course this also follows from the general results of Section II.

How should these results be interpreted? First, we note that
the channel r is equivalent to a channel exhibiting erasure
bursts, since once it is known that channel t2 was used to
transmit a block of n bits, the received versions of these bits
should be ignored, since they bear no relationship to the

transmitted bits. And it is easy to verify that the capacity of
such an erasure-burst channel is indeed (1 - e) log 2, whatever
the burst length.

It is evident that C,l ought to be less than c, since the
receiver using { will not know when a received block of length
n is bad, whereas the receiver using s will, and this extra
information cannot possibly hurt performance. But if n is very
large, the t-users could, for example, include in the n bits in
each transmitted packet a certain number of parity checks. To
be specific, let us assume in fact that each packet includeslog, n
parity checks. Then if the packet is transmitted over ti. all
of these parity checks will be satisfied upon reception. But if
the packet is transmitted over ta, these will be parity checks
on random data, and the probability that they will all be
satisfied is 2-r”sP  = n-l. Thus when n is large, the presence
of a useless data packet can be detected with high probability
and low overhead. In other words, for large n the channel 5 is
virtually identical with r, and this is what our computations
with mutual information predicted.

Thus if n is sufficiently large, a good strategy for communi-
cation over f is to reserve a certain number of the bits in each
transmitter package for parity. This number should be large
enough so that the presence of bad data can be detected with
high probability, but small enough (relative to n) not to sub-
stantially reduce the transmission rate. This strategy will, as
previously explained, effectively transform the channel into an
erasure-burst channel. Then if n’ denotes the number of bits in
each packet not reserved for parity, one should code for the
channel by interleaving n’ copies of a code designed for use on
the binary erasure channel (BEC). Since the capacity of the
BEC is just as large as that of the erasure-burst channel,
presumably there will be no performance loss. Furthermore,
the decoding complexity of the ~1’ parallel binary code is much
less than n’ times the complexity of decoding just one such
code; see Ref. 5 for details.

IV. Conclusions
On this basis of the mutual information calculation in

Section II, and on the basis of the example in Section III, we
draw the following conclusions about RF1 channels. First, to
communicate reliably over 7, nothing is lost by interleaving,
and in addition there may be a considerable advantage in doing
so. Second, while there will in general be a penalty in perfor-
mance if interleaving on { is used, if n is large enough, it may
be possible to accurately estimate the channel index k affect-
ing a given data packet of length n or by using some kind of
generalized parity check. If this can be done, then t is effec-
tively transformed into r and then interleaving can be used
without penalty.
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